This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of rexima as of 14-Aug-2025. Duplicate version of rexima . (Contributed by Scott Fenton, 27-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaeqsexvOLD.1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | imaeqsexvOLD | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqsexvOLD.1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ) | |
| 3 | fvelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 5 | 4 | exbidv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 6 | 2 5 | bitrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 7 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) | |
| 8 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ↔ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) | |
| 9 | 8 | anbi1i | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
| 11 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 12 | 11 1 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ↔ 𝜓 ) |
| 13 | 10 12 | bitri | ⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ 𝜓 ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 15 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) | |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
| 17 | 7 14 16 | 3bitr3ri | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 18 | 6 17 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |