This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of rexima as of 14-Aug-2025. Duplicate version of rexima . (Contributed by Scott Fenton, 27-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaeqsexvOLD.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | imaeqsexvOLD | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqsexvOLD.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | df-rex | |- ( E. x e. ( F " B ) ph <-> E. x ( x e. ( F " B ) /\ ph ) ) |
|
| 3 | fvelimab | |- ( ( F Fn A /\ B C_ A ) -> ( x e. ( F " B ) <-> E. y e. B ( F ` y ) = x ) ) |
|
| 4 | 3 | anbi1d | |- ( ( F Fn A /\ B C_ A ) -> ( ( x e. ( F " B ) /\ ph ) <-> ( E. y e. B ( F ` y ) = x /\ ph ) ) ) |
| 5 | 4 | exbidv | |- ( ( F Fn A /\ B C_ A ) -> ( E. x ( x e. ( F " B ) /\ ph ) <-> E. x ( E. y e. B ( F ` y ) = x /\ ph ) ) ) |
| 6 | 2 5 | bitrid | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. x ( E. y e. B ( F ` y ) = x /\ ph ) ) ) |
| 7 | rexcom4 | |- ( E. y e. B E. x ( ( F ` y ) = x /\ ph ) <-> E. x E. y e. B ( ( F ` y ) = x /\ ph ) ) |
|
| 8 | eqcom | |- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
|
| 9 | 8 | anbi1i | |- ( ( ( F ` y ) = x /\ ph ) <-> ( x = ( F ` y ) /\ ph ) ) |
| 10 | 9 | exbii | |- ( E. x ( ( F ` y ) = x /\ ph ) <-> E. x ( x = ( F ` y ) /\ ph ) ) |
| 11 | fvex | |- ( F ` y ) e. _V |
|
| 12 | 11 1 | ceqsexv | |- ( E. x ( x = ( F ` y ) /\ ph ) <-> ps ) |
| 13 | 10 12 | bitri | |- ( E. x ( ( F ` y ) = x /\ ph ) <-> ps ) |
| 14 | 13 | rexbii | |- ( E. y e. B E. x ( ( F ` y ) = x /\ ph ) <-> E. y e. B ps ) |
| 15 | r19.41v | |- ( E. y e. B ( ( F ` y ) = x /\ ph ) <-> ( E. y e. B ( F ` y ) = x /\ ph ) ) |
|
| 16 | 15 | exbii | |- ( E. x E. y e. B ( ( F ` y ) = x /\ ph ) <-> E. x ( E. y e. B ( F ` y ) = x /\ ph ) ) |
| 17 | 7 14 16 | 3bitr3ri | |- ( E. x ( E. y e. B ( F ` y ) = x /\ ph ) <-> E. y e. B ps ) |
| 18 | 6 17 | bitrdi | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) ph <-> E. y e. B ps ) ) |