This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking _i to the K -th power is the same as using the K mod 4 -th power instead, by i4 . (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iexpcyc | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 mod 4 ) ) = ( i ↑ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 2 | 4re | ⊢ 4 ∈ ℝ | |
| 3 | 4pos | ⊢ 0 < 4 | |
| 4 | 2 3 | elrpii | ⊢ 4 ∈ ℝ+ |
| 5 | modval | ⊢ ( ( 𝐾 ∈ ℝ ∧ 4 ∈ ℝ+ ) → ( 𝐾 mod 4 ) = ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 mod 4 ) = ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 mod 4 ) ) = ( i ↑ ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) ) |
| 8 | 4z | ⊢ 4 ∈ ℤ | |
| 9 | 4nn | ⊢ 4 ∈ ℕ | |
| 10 | nndivre | ⊢ ( ( 𝐾 ∈ ℝ ∧ 4 ∈ ℕ ) → ( 𝐾 / 4 ) ∈ ℝ ) | |
| 11 | 1 9 10 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 / 4 ) ∈ ℝ ) |
| 12 | 11 | flcld | ⊢ ( 𝐾 ∈ ℤ → ( ⌊ ‘ ( 𝐾 / 4 ) ) ∈ ℤ ) |
| 13 | zmulcl | ⊢ ( ( 4 ∈ ℤ ∧ ( ⌊ ‘ ( 𝐾 / 4 ) ) ∈ ℤ ) → ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ∈ ℤ ) | |
| 14 | 8 12 13 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ∈ ℤ ) |
| 15 | ax-icn | ⊢ i ∈ ℂ | |
| 16 | ine0 | ⊢ i ≠ 0 | |
| 17 | expsub | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 𝐾 ∈ ℤ ∧ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ∈ ℤ ) ) → ( i ↑ ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( ( i ↑ 𝐾 ) / ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) ) | |
| 18 | 15 16 17 | mpanl12 | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ∈ ℤ ) → ( i ↑ ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( ( i ↑ 𝐾 ) / ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) ) |
| 19 | 14 18 | mpdan | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( ( i ↑ 𝐾 ) / ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) ) |
| 20 | expmulz | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 4 ∈ ℤ ∧ ( ⌊ ‘ ( 𝐾 / 4 ) ) ∈ ℤ ) ) → ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) = ( ( i ↑ 4 ) ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) | |
| 21 | 15 16 20 | mpanl12 | ⊢ ( ( 4 ∈ ℤ ∧ ( ⌊ ‘ ( 𝐾 / 4 ) ) ∈ ℤ ) → ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) = ( ( i ↑ 4 ) ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) |
| 22 | 8 12 21 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) = ( ( i ↑ 4 ) ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) |
| 23 | i4 | ⊢ ( i ↑ 4 ) = 1 | |
| 24 | 23 | oveq1i | ⊢ ( ( i ↑ 4 ) ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) = ( 1 ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) |
| 25 | 1exp | ⊢ ( ( ⌊ ‘ ( 𝐾 / 4 ) ) ∈ ℤ → ( 1 ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) = 1 ) | |
| 26 | 12 25 | syl | ⊢ ( 𝐾 ∈ ℤ → ( 1 ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) = 1 ) |
| 27 | 24 26 | eqtrid | ⊢ ( 𝐾 ∈ ℤ → ( ( i ↑ 4 ) ↑ ( ⌊ ‘ ( 𝐾 / 4 ) ) ) = 1 ) |
| 28 | 22 27 | eqtrd | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) = 1 ) |
| 29 | 28 | oveq2d | ⊢ ( 𝐾 ∈ ℤ → ( ( i ↑ 𝐾 ) / ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( ( i ↑ 𝐾 ) / 1 ) ) |
| 30 | expclz | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ ) → ( i ↑ 𝐾 ) ∈ ℂ ) | |
| 31 | 15 16 30 | mp3an12 | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ 𝐾 ) ∈ ℂ ) |
| 32 | 31 | div1d | ⊢ ( 𝐾 ∈ ℤ → ( ( i ↑ 𝐾 ) / 1 ) = ( i ↑ 𝐾 ) ) |
| 33 | 29 32 | eqtrd | ⊢ ( 𝐾 ∈ ℤ → ( ( i ↑ 𝐾 ) / ( i ↑ ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( i ↑ 𝐾 ) ) |
| 34 | 19 33 | eqtrd | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 − ( 4 · ( ⌊ ‘ ( 𝐾 / 4 ) ) ) ) ) = ( i ↑ 𝐾 ) ) |
| 35 | 7 34 | eqtrd | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 mod 4 ) ) = ( i ↑ 𝐾 ) ) |