This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnass | ⊢ ( ( 3 ↑ 3 ) ↑ 3 ) < ( 3 ↑ ( 3 ↑ 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | ⊢ 3 ∈ ℂ | |
| 2 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 3 | expmul | ⊢ ( ( 3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 3 ↑ ( 3 · 3 ) ) = ( ( 3 ↑ 3 ) ↑ 3 ) ) | |
| 4 | 1 2 2 3 | mp3an | ⊢ ( 3 ↑ ( 3 · 3 ) ) = ( ( 3 ↑ 3 ) ↑ 3 ) |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 2 2 | nn0mulcli | ⊢ ( 3 · 3 ) ∈ ℕ0 |
| 7 | 6 | nn0zi | ⊢ ( 3 · 3 ) ∈ ℤ |
| 8 | 2 2 | nn0expcli | ⊢ ( 3 ↑ 3 ) ∈ ℕ0 |
| 9 | 8 | nn0zi | ⊢ ( 3 ↑ 3 ) ∈ ℤ |
| 10 | 1lt3 | ⊢ 1 < 3 | |
| 11 | 1 | sqvali | ⊢ ( 3 ↑ 2 ) = ( 3 · 3 ) |
| 12 | 2z | ⊢ 2 ∈ ℤ | |
| 13 | 3z | ⊢ 3 ∈ ℤ | |
| 14 | 2lt3 | ⊢ 2 < 3 | |
| 15 | ltexp2a | ⊢ ( ( ( 3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ ) ∧ ( 1 < 3 ∧ 2 < 3 ) ) → ( 3 ↑ 2 ) < ( 3 ↑ 3 ) ) | |
| 16 | 10 14 15 | mpanr12 | ⊢ ( ( 3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 3 ↑ 2 ) < ( 3 ↑ 3 ) ) |
| 17 | 5 12 13 16 | mp3an | ⊢ ( 3 ↑ 2 ) < ( 3 ↑ 3 ) |
| 18 | 11 17 | eqbrtrri | ⊢ ( 3 · 3 ) < ( 3 ↑ 3 ) |
| 19 | ltexp2a | ⊢ ( ( ( 3 ∈ ℝ ∧ ( 3 · 3 ) ∈ ℤ ∧ ( 3 ↑ 3 ) ∈ ℤ ) ∧ ( 1 < 3 ∧ ( 3 · 3 ) < ( 3 ↑ 3 ) ) ) → ( 3 ↑ ( 3 · 3 ) ) < ( 3 ↑ ( 3 ↑ 3 ) ) ) | |
| 20 | 10 18 19 | mpanr12 | ⊢ ( ( 3 ∈ ℝ ∧ ( 3 · 3 ) ∈ ℤ ∧ ( 3 ↑ 3 ) ∈ ℤ ) → ( 3 ↑ ( 3 · 3 ) ) < ( 3 ↑ ( 3 ↑ 3 ) ) ) |
| 21 | 5 7 9 20 | mp3an | ⊢ ( 3 ↑ ( 3 · 3 ) ) < ( 3 ↑ ( 3 ↑ 3 ) ) |
| 22 | 4 21 | eqbrtrri | ⊢ ( ( 3 ↑ 3 ) ↑ 3 ) < ( 3 ↑ ( 3 ↑ 3 ) ) |