This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _i to the fourth power. (Contributed by NM, 31-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i4 | ⊢ ( i ↑ 4 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | expadd | ⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) ) ) | |
| 4 | 1 2 2 3 | mp3an | ⊢ ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) ) |
| 5 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 6 | 5 | oveq2i | ⊢ ( i ↑ ( 2 + 2 ) ) = ( i ↑ 4 ) |
| 7 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 8 | 7 7 | oveq12i | ⊢ ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = ( - 1 · - 1 ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | 9 9 | mul2negi | ⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 11 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 12 | 8 10 11 | 3eqtri | ⊢ ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = 1 |
| 13 | 4 6 12 | 3eqtr3i | ⊢ ( i ↑ 4 ) = 1 |