This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking _i to the K -th power is the same as using the K mod 4 -th power instead, by i4 . (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iexpcyc | |- ( K e. ZZ -> ( _i ^ ( K mod 4 ) ) = ( _i ^ K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 2 | 4re | |- 4 e. RR |
|
| 3 | 4pos | |- 0 < 4 |
|
| 4 | 2 3 | elrpii | |- 4 e. RR+ |
| 5 | modval | |- ( ( K e. RR /\ 4 e. RR+ ) -> ( K mod 4 ) = ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) |
|
| 6 | 1 4 5 | sylancl | |- ( K e. ZZ -> ( K mod 4 ) = ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) |
| 7 | 6 | oveq2d | |- ( K e. ZZ -> ( _i ^ ( K mod 4 ) ) = ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) |
| 8 | 4z | |- 4 e. ZZ |
|
| 9 | 4nn | |- 4 e. NN |
|
| 10 | nndivre | |- ( ( K e. RR /\ 4 e. NN ) -> ( K / 4 ) e. RR ) |
|
| 11 | 1 9 10 | sylancl | |- ( K e. ZZ -> ( K / 4 ) e. RR ) |
| 12 | 11 | flcld | |- ( K e. ZZ -> ( |_ ` ( K / 4 ) ) e. ZZ ) |
| 13 | zmulcl | |- ( ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) -> ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) |
|
| 14 | 8 12 13 | sylancr | |- ( K e. ZZ -> ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) |
| 15 | ax-icn | |- _i e. CC |
|
| 16 | ine0 | |- _i =/= 0 |
|
| 17 | expsub | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( K e. ZZ /\ ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) ) -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) |
|
| 18 | 15 16 17 | mpanl12 | |- ( ( K e. ZZ /\ ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) |
| 19 | 14 18 | mpdan | |- ( K e. ZZ -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) |
| 20 | expmulz | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) ) -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) |
|
| 21 | 15 16 20 | mpanl12 | |- ( ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) |
| 22 | 8 12 21 | sylancr | |- ( K e. ZZ -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) |
| 23 | i4 | |- ( _i ^ 4 ) = 1 |
|
| 24 | 23 | oveq1i | |- ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) = ( 1 ^ ( |_ ` ( K / 4 ) ) ) |
| 25 | 1exp | |- ( ( |_ ` ( K / 4 ) ) e. ZZ -> ( 1 ^ ( |_ ` ( K / 4 ) ) ) = 1 ) |
|
| 26 | 12 25 | syl | |- ( K e. ZZ -> ( 1 ^ ( |_ ` ( K / 4 ) ) ) = 1 ) |
| 27 | 24 26 | eqtrid | |- ( K e. ZZ -> ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) = 1 ) |
| 28 | 22 27 | eqtrd | |- ( K e. ZZ -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = 1 ) |
| 29 | 28 | oveq2d | |- ( K e. ZZ -> ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / 1 ) ) |
| 30 | expclz | |- ( ( _i e. CC /\ _i =/= 0 /\ K e. ZZ ) -> ( _i ^ K ) e. CC ) |
|
| 31 | 15 16 30 | mp3an12 | |- ( K e. ZZ -> ( _i ^ K ) e. CC ) |
| 32 | 31 | div1d | |- ( K e. ZZ -> ( ( _i ^ K ) / 1 ) = ( _i ^ K ) ) |
| 33 | 29 32 | eqtrd | |- ( K e. ZZ -> ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( _i ^ K ) ) |
| 34 | 19 33 | eqtrd | |- ( K e. ZZ -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( _i ^ K ) ) |
| 35 | 7 34 | eqtrd | |- ( K e. ZZ -> ( _i ^ ( K mod 4 ) ) = ( _i ^ K ) ) |