This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | idrnghm | ⊢ ( 𝑅 ∈ Rng → ( I ↾ 𝐵 ) ∈ ( 𝑅 RngHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | id | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Rng ) | |
| 3 | 2 2 | jca | ⊢ ( 𝑅 ∈ Rng → ( 𝑅 ∈ Rng ∧ 𝑅 ∈ Rng ) ) |
| 4 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 5 | ablgrp | ⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) | |
| 6 | 1 | idghm | ⊢ ( 𝑅 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝑅 ∈ Rng → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 9 | 8 | rngmgp | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 10 | sgrpmgm | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) | |
| 11 | 8 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 12 | 11 | idmgmhm | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mgm → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) |
| 13 | 9 10 12 | 3syl | ⊢ ( 𝑅 ∈ Rng → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) |
| 14 | 7 13 | jca | ⊢ ( 𝑅 ∈ Rng → ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 15 | 8 8 | isrnghmmul | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 RngHom 𝑅 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑅 ∈ Rng ) ∧ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
| 16 | 3 14 15 | sylanbrc | ⊢ ( 𝑅 ∈ Rng → ( I ↾ 𝐵 ) ∈ ( 𝑅 RngHom 𝑅 ) ) |