This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idrnghm.b | |- B = ( Base ` R ) |
|
| Assertion | idrnghm | |- ( R e. Rng -> ( _I |` B ) e. ( R RngHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idrnghm.b | |- B = ( Base ` R ) |
|
| 2 | id | |- ( R e. Rng -> R e. Rng ) |
|
| 3 | 2 2 | jca | |- ( R e. Rng -> ( R e. Rng /\ R e. Rng ) ) |
| 4 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 5 | ablgrp | |- ( R e. Abel -> R e. Grp ) |
|
| 6 | 1 | idghm | |- ( R e. Grp -> ( _I |` B ) e. ( R GrpHom R ) ) |
| 7 | 4 5 6 | 3syl | |- ( R e. Rng -> ( _I |` B ) e. ( R GrpHom R ) ) |
| 8 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 9 | 8 | rngmgp | |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
| 10 | sgrpmgm | |- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) |
|
| 11 | 8 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 12 | 11 | idmgmhm | |- ( ( mulGrp ` R ) e. Mgm -> ( _I |` B ) e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` R ) ) ) |
| 13 | 9 10 12 | 3syl | |- ( R e. Rng -> ( _I |` B ) e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` R ) ) ) |
| 14 | 7 13 | jca | |- ( R e. Rng -> ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` R ) ) ) ) |
| 15 | 8 8 | isrnghmmul | |- ( ( _I |` B ) e. ( R RngHom R ) <-> ( ( R e. Rng /\ R e. Rng ) /\ ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` R ) ) ) ) ) |
| 16 | 3 14 15 | sylanbrc | |- ( R e. Rng -> ( _I |` B ) e. ( R RngHom R ) ) |