This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure with the singleton containing only the identity function restricted to a set A as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on A to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on A . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idressubmefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| idresefmnd.e | ⊢ 𝐸 = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) | ||
| Assertion | idresefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ∈ Mnd ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubmefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | idresefmnd.e | ⊢ 𝐸 = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) | |
| 3 | 1 | idressubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 4 | 1 | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) | |
| 8 | 5 6 7 | issubm2 | ⊢ ( 𝐺 ∈ Mnd → ( { ( I ↾ 𝐴 ) } ∈ ( SubMnd ‘ 𝐺 ) ↔ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ { ( I ↾ 𝐴 ) } ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubMnd ‘ 𝐺 ) ↔ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ { ( I ↾ 𝐴 ) } ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ) ) ) |
| 10 | snex | ⊢ { ( I ↾ 𝐴 ) } ∈ V | |
| 11 | 2 5 | ressbas | ⊢ ( { ( I ↾ 𝐴 ) } ∈ V → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
| 12 | 10 11 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
| 13 | inss2 | ⊢ ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) ⊆ ( Base ‘ 𝐺 ) | |
| 14 | 12 13 | eqsstrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 2 | eqcomi | ⊢ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) = 𝐸 |
| 16 | 15 | eleq1i | ⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ↔ 𝐸 ∈ Mnd ) |
| 17 | 16 | biimpi | ⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd → 𝐸 ∈ Mnd ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ { ( I ↾ 𝐴 ) } ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ) → 𝐸 ∈ Mnd ) |
| 19 | 14 18 | anim12ci | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ { ( I ↾ 𝐴 ) } ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ) ) → ( 𝐸 ∈ Mnd ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ { ( I ↾ 𝐴 ) } ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Mnd ) → ( 𝐸 ∈ Mnd ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
| 21 | 9 20 | sylbid | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐸 ∈ Mnd ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
| 22 | 3 21 | mpd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ∈ Mnd ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |