This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure with the singleton containing only the identity function restricted to a set A as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on A to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on A . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idressubmefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| idresefmnd.e | |- E = ( G |`s { ( _I |` A ) } ) |
||
| Assertion | idresefmnd | |- ( A e. V -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubmefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | idresefmnd.e | |- E = ( G |`s { ( _I |` A ) } ) |
|
| 3 | 1 | idressubmefmnd | |- ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) |
| 4 | 1 | efmndmnd | |- ( A e. V -> G e. Mnd ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | eqid | |- ( G |`s { ( _I |` A ) } ) = ( G |`s { ( _I |` A ) } ) |
|
| 8 | 5 6 7 | issubm2 | |- ( G e. Mnd -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
| 9 | 4 8 | syl | |- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
| 10 | snex | |- { ( _I |` A ) } e. _V |
|
| 11 | 2 5 | ressbas | |- ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 12 | 10 11 | mp1i | |- ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 13 | inss2 | |- ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) |
|
| 14 | 12 13 | eqsstrrdi | |- ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) |
| 15 | 2 | eqcomi | |- ( G |`s { ( _I |` A ) } ) = E |
| 16 | 15 | eleq1i | |- ( ( G |`s { ( _I |` A ) } ) e. Mnd <-> E e. Mnd ) |
| 17 | 16 | biimpi | |- ( ( G |`s { ( _I |` A ) } ) e. Mnd -> E e. Mnd ) |
| 18 | 17 | 3ad2ant3 | |- ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> E e. Mnd ) |
| 19 | 14 18 | anim12ci | |- ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
| 20 | 19 | ex | |- ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 21 | 9 20 | sylbid | |- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 22 | 3 21 | mpd | |- ( A e. V -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |