This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| Assertion | idmhm | ⊢ ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | id | ⊢ ( 𝑀 ∈ Mnd → 𝑀 ∈ Mnd ) | |
| 3 | f1oi | ⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 | |
| 4 | f1of | ⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 7 | 1 6 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 9 | fvresi | ⊢ ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 11 | fvresi | ⊢ ( 𝑎 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 ) | |
| 12 | fvresi | ⊢ ( 𝑏 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 ) | |
| 13 | 11 12 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 15 | 10 14 | eqtr4d | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝑀 ∈ Mnd → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 18 | 1 17 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 19 | fvresi | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
| 21 | 5 16 20 | 3jca | ⊢ ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) ) |
| 22 | 1 1 6 6 17 17 | ismhm | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
| 23 | 2 2 21 22 | syl21anbrc | ⊢ ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ) |