This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idmhm.b | |- B = ( Base ` M ) |
|
| Assertion | idmhm | |- ( M e. Mnd -> ( _I |` B ) e. ( M MndHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmhm.b | |- B = ( Base ` M ) |
|
| 2 | id | |- ( M e. Mnd -> M e. Mnd ) |
|
| 3 | f1oi | |- ( _I |` B ) : B -1-1-onto-> B |
|
| 4 | f1of | |- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
|
| 5 | 3 4 | mp1i | |- ( M e. Mnd -> ( _I |` B ) : B --> B ) |
| 6 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 7 | 1 6 | mndcl | |- ( ( M e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) |
| 8 | 7 | 3expb | |- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) |
| 9 | fvresi | |- ( ( a ( +g ` M ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
|
| 10 | 8 9 | syl | |- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
| 11 | fvresi | |- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
|
| 12 | fvresi | |- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
|
| 13 | 11 12 | oveqan12d | |- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 14 | 13 | adantl | |- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 15 | 10 14 | eqtr4d | |- ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 16 | 15 | ralrimivva | |- ( M e. Mnd -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 17 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 18 | 1 17 | mndidcl | |- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 19 | fvresi | |- ( ( 0g ` M ) e. B -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
|
| 20 | 18 19 | syl | |- ( M e. Mnd -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) |
| 21 | 5 16 20 | 3jca | |- ( M e. Mnd -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) |
| 22 | 1 1 6 6 17 17 | ismhm | |- ( ( _I |` B ) e. ( M MndHom M ) <-> ( ( M e. Mnd /\ M e. Mnd ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) ) |
| 23 | 2 2 21 22 | syl21anbrc | |- ( M e. Mnd -> ( _I |` B ) e. ( M MndHom M ) ) |