This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idmgmhm.b | |- B = ( Base ` M ) |
|
| Assertion | idmgmhm | |- ( M e. Mgm -> ( _I |` B ) e. ( M MgmHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmgmhm.b | |- B = ( Base ` M ) |
|
| 2 | id | |- ( M e. Mgm -> M e. Mgm ) |
|
| 3 | 2 | ancri | |- ( M e. Mgm -> ( M e. Mgm /\ M e. Mgm ) ) |
| 4 | f1oi | |- ( _I |` B ) : B -1-1-onto-> B |
|
| 5 | f1of | |- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
|
| 6 | 4 5 | mp1i | |- ( M e. Mgm -> ( _I |` B ) : B --> B ) |
| 7 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 8 | 1 7 | mgmcl | |- ( ( M e. Mgm /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) |
| 9 | 8 | 3expb | |- ( ( M e. Mgm /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) |
| 10 | fvresi | |- ( ( a ( +g ` M ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
|
| 11 | 9 10 | syl | |- ( ( M e. Mgm /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) |
| 12 | fvresi | |- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
|
| 13 | fvresi | |- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
|
| 14 | 12 13 | oveqan12d | |- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 15 | 14 | adantl | |- ( ( M e. Mgm /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) |
| 16 | 11 15 | eqtr4d | |- ( ( M e. Mgm /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 17 | 16 | ralrimivva | |- ( M e. Mgm -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) |
| 18 | 6 17 | jca | |- ( M e. Mgm -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) ) |
| 19 | 1 1 7 7 | ismgmhm | |- ( ( _I |` B ) e. ( M MgmHom M ) <-> ( ( M e. Mgm /\ M e. Mgm ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) ) ) |
| 20 | 3 18 19 | sylanbrc | |- ( M e. Mgm -> ( _I |` B ) e. ( M MgmHom M ) ) |