This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | invlmhm.b | ⊢ 𝐼 = ( invg ‘ 𝑀 ) | |
| Assertion | invlmhm | ⊢ ( 𝑀 ∈ LMod → 𝐼 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invlmhm.b | ⊢ 𝐼 = ( invg ‘ 𝑀 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) | |
| 6 | id | ⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) | |
| 7 | eqidd | ⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) | |
| 8 | lmodabl | ⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Abel ) | |
| 9 | 2 1 | invghm | ⊢ ( 𝑀 ∈ Abel ↔ 𝐼 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 10 | 8 9 | sylib | ⊢ ( 𝑀 ∈ LMod → 𝐼 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 11 | 2 4 3 1 5 | lmodvsinv2 | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) = ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 13 | 12 | 3expb | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 14 | 2 3 3 4 4 5 6 6 7 10 13 | islmhmd | ⊢ ( 𝑀 ∈ LMod → 𝐼 ∈ ( 𝑀 LMHom 𝑀 ) ) |