This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idlmhm.b | |- B = ( Base ` M ) |
|
| Assertion | idlmhm | |- ( M e. LMod -> ( _I |` B ) e. ( M LMHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmhm.b | |- B = ( Base ` M ) |
|
| 2 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 3 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 4 | eqid | |- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
|
| 5 | id | |- ( M e. LMod -> M e. LMod ) |
|
| 6 | eqidd | |- ( M e. LMod -> ( Scalar ` M ) = ( Scalar ` M ) ) |
|
| 7 | lmodgrp | |- ( M e. LMod -> M e. Grp ) |
|
| 8 | 1 | idghm | |- ( M e. Grp -> ( _I |` B ) e. ( M GrpHom M ) ) |
| 9 | 7 8 | syl | |- ( M e. LMod -> ( _I |` B ) e. ( M GrpHom M ) ) |
| 10 | 1 3 2 4 | lmodvscl | |- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) -> ( x ( .s ` M ) y ) e. B ) |
| 11 | 10 | 3expb | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) ) -> ( x ( .s ` M ) y ) e. B ) |
| 12 | fvresi | |- ( ( x ( .s ` M ) y ) e. B -> ( ( _I |` B ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) y ) ) |
|
| 13 | 11 12 | syl | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) ) -> ( ( _I |` B ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) y ) ) |
| 14 | fvresi | |- ( y e. B -> ( ( _I |` B ) ` y ) = y ) |
|
| 15 | 14 | ad2antll | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) ) -> ( ( _I |` B ) ` y ) = y ) |
| 16 | 15 | oveq2d | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) ) -> ( x ( .s ` M ) ( ( _I |` B ) ` y ) ) = ( x ( .s ` M ) y ) ) |
| 17 | 13 16 | eqtr4d | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. B ) ) -> ( ( _I |` B ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) ( ( _I |` B ) ` y ) ) ) |
| 18 | 1 2 2 3 3 4 5 5 6 9 17 | islmhmd | |- ( M e. LMod -> ( _I |` B ) e. ( M LMHom M ) ) |