This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccen | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ≈ ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 0 [,] 1 ) ∈ V | |
| 2 | ovex | ⊢ ( 𝐴 [,] 𝐵 ) ∈ V | |
| 3 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | |
| 4 | 3 | iccf1o | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) |
| 6 | f1oen2g | ⊢ ( ( ( 0 [,] 1 ) ∈ V ∧ ( 𝐴 [,] 𝐵 ) ∈ V ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) → ( 0 [,] 1 ) ≈ ( 𝐴 [,] 𝐵 ) ) | |
| 7 | 1 2 5 6 | mp3an12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ≈ ( 𝐴 [,] 𝐵 ) ) |