This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
||
| icccmp.3 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
||
| icccmp.4 | |- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
||
| icccmp.5 | |- ( ph -> A e. RR ) |
||
| icccmp.6 | |- ( ph -> B e. RR ) |
||
| icccmp.7 | |- ( ph -> A <_ B ) |
||
| icccmp.8 | |- ( ph -> U C_ J ) |
||
| icccmp.9 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| Assertion | icccmplem3 | |- ( ph -> B e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| 2 | icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
|
| 3 | icccmp.3 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 4 | icccmp.4 | |- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
|
| 5 | icccmp.5 | |- ( ph -> A e. RR ) |
|
| 6 | icccmp.6 | |- ( ph -> B e. RR ) |
|
| 7 | icccmp.7 | |- ( ph -> A <_ B ) |
|
| 8 | icccmp.8 | |- ( ph -> U C_ J ) |
|
| 9 | icccmp.9 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 10 | 4 | ssrab3 | |- S C_ ( A [,] B ) |
| 11 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 12 | 5 6 11 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 13 | 10 12 | sstrid | |- ( ph -> S C_ RR ) |
| 14 | 1 2 3 4 5 6 7 8 9 | icccmplem1 | |- ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) |
| 15 | 14 | simpld | |- ( ph -> A e. S ) |
| 16 | 15 | ne0d | |- ( ph -> S =/= (/) ) |
| 17 | 14 | simprd | |- ( ph -> A. y e. S y <_ B ) |
| 18 | brralrspcev | |- ( ( B e. RR /\ A. y e. S y <_ B ) -> E. v e. RR A. y e. S y <_ v ) |
|
| 19 | 6 17 18 | syl2anc | |- ( ph -> E. v e. RR A. y e. S y <_ v ) |
| 20 | 13 16 19 | suprcld | |- ( ph -> sup ( S , RR , < ) e. RR ) |
| 21 | 13 16 19 15 | suprubd | |- ( ph -> A <_ sup ( S , RR , < ) ) |
| 22 | suprleub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. v e. RR A. y e. S y <_ v ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) |
|
| 23 | 13 16 19 6 22 | syl31anc | |- ( ph -> ( sup ( S , RR , < ) <_ B <-> A. y e. S y <_ B ) ) |
| 24 | 17 23 | mpbird | |- ( ph -> sup ( S , RR , < ) <_ B ) |
| 25 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) |
|
| 26 | 5 6 25 | syl2anc | |- ( ph -> ( sup ( S , RR , < ) e. ( A [,] B ) <-> ( sup ( S , RR , < ) e. RR /\ A <_ sup ( S , RR , < ) /\ sup ( S , RR , < ) <_ B ) ) ) |
| 27 | 20 21 24 26 | mpbir3and | |- ( ph -> sup ( S , RR , < ) e. ( A [,] B ) ) |
| 28 | 9 27 | sseldd | |- ( ph -> sup ( S , RR , < ) e. U. U ) |
| 29 | eluni2 | |- ( sup ( S , RR , < ) e. U. U <-> E. u e. U sup ( S , RR , < ) e. u ) |
|
| 30 | 28 29 | sylib | |- ( ph -> E. u e. U sup ( S , RR , < ) e. u ) |
| 31 | 8 | sselda | |- ( ( ph /\ u e. U ) -> u e. J ) |
| 32 | 3 | rexmet | |- D e. ( *Met ` RR ) |
| 33 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 34 | 3 33 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` D ) |
| 35 | 1 34 | eqtri | |- J = ( MetOpen ` D ) |
| 36 | 35 | mopni2 | |- ( ( D e. ( *Met ` RR ) /\ u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
| 37 | 32 36 | mp3an1 | |- ( ( u e. J /\ sup ( S , RR , < ) e. u ) -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
| 38 | 37 | ex | |- ( u e. J -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) |
| 39 | 31 38 | syl | |- ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) |
| 40 | 5 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A e. RR ) |
| 41 | 6 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. RR ) |
| 42 | 7 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> A <_ B ) |
| 43 | 8 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> U C_ J ) |
| 44 | 9 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( A [,] B ) C_ U. U ) |
| 45 | simplr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> u e. U ) |
|
| 46 | simprl | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> w e. RR+ ) |
|
| 47 | simprr | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) |
|
| 48 | eqid | |- sup ( S , RR , < ) = sup ( S , RR , < ) |
|
| 49 | eqid | |- if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) = if ( ( sup ( S , RR , < ) + ( w / 2 ) ) <_ B , ( sup ( S , RR , < ) + ( w / 2 ) ) , B ) |
|
| 50 | 1 2 3 4 40 41 42 43 44 45 46 47 48 49 | icccmplem2 | |- ( ( ( ph /\ u e. U ) /\ ( w e. RR+ /\ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u ) ) -> B e. S ) |
| 51 | 50 | rexlimdvaa | |- ( ( ph /\ u e. U ) -> ( E. w e. RR+ ( sup ( S , RR , < ) ( ball ` D ) w ) C_ u -> B e. S ) ) |
| 52 | 39 51 | syld | |- ( ( ph /\ u e. U ) -> ( sup ( S , RR , < ) e. u -> B e. S ) ) |
| 53 | 52 | rexlimdva | |- ( ph -> ( E. u e. U sup ( S , RR , < ) e. u -> B e. S ) ) |
| 54 | 30 53 | mpd | |- ( ph -> B e. S ) |