This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubcan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 −ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 3 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 −ℎ 𝐶 ) ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 9 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 10 | 6 9 | mpan | ⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
| 11 | hvaddcan | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) | |
| 12 | 10 11 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) |
| 13 | 8 12 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) |
| 14 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 15 | 6 14 | pm3.2i | ⊢ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) |
| 16 | hvmulcan | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | |
| 17 | 15 16 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 19 | 5 13 18 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 −ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |