This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
| hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hodsi | ⊢ ( ( 𝑅 −op 𝑆 ) = 𝑇 ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| 2 | hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 3 | hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 4 | 1 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ 𝑥 ) ∈ ℋ ) |
| 5 | 2 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 6 | 3 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 7 | hvsubadd | ⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 9 | hodval | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 10 | 1 2 9 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 13 | 2 3 12 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 15 | 8 11 14 | 3bitr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 16 | 15 | ralbiia | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
| 17 | 1 2 | hosubcli | ⊢ ( 𝑅 −op 𝑆 ) : ℋ ⟶ ℋ |
| 18 | 17 3 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑅 −op 𝑆 ) = 𝑇 ) |
| 19 | 2 3 | hoaddcli | ⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 20 | 19 1 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |
| 21 | 16 18 20 | 3bitr3i | ⊢ ( ( 𝑅 −op 𝑆 ) = 𝑇 ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |