This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
| hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hoaddassi | ⊢ ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
| 2 | hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 3 | hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 4 | hosval | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑅 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 5 | 1 2 4 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 +op 𝑆 ) ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 | 1 2 | hoaddcli | ⊢ ( 𝑅 +op 𝑆 ) : ℋ ⟶ ℋ |
| 8 | hosval | ⊢ ( ( ( 𝑅 +op 𝑆 ) : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) ‘ 𝑥 ) = ( ( ( 𝑅 +op 𝑆 ) ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 9 | 7 3 8 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) ‘ 𝑥 ) = ( ( ( 𝑅 +op 𝑆 ) ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 10 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 11 | 2 3 10 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 13 | 2 3 | hoaddcli | ⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 14 | hosval | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ) | |
| 15 | 1 13 14 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ) |
| 16 | 1 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ 𝑥 ) ∈ ℋ ) |
| 17 | 2 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 18 | 3 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 19 | ax-hvass | ⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑅 ‘ 𝑥 ) +ℎ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 21 | 12 15 20 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 22 | 6 9 21 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) ) |
| 23 | 22 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) |
| 24 | 7 3 | hoaddcli | ⊢ ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) : ℋ ⟶ ℋ |
| 25 | 1 13 | hoaddcli | ⊢ ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) : ℋ ⟶ ℋ |
| 26 | 24 25 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ) |
| 27 | 23 26 | mpbi | ⊢ ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) |