This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 10-Nov-2000) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hosmval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐴 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 5 | 3 4 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 6 | eqid | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 7 | ovex | ⊢ ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 9 | 2 8 | sylan9eq | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 10 | 9 | 3impa | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |