This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | |- R : ~H --> ~H |
|
| hods.2 | |- S : ~H --> ~H |
||
| hods.3 | |- T : ~H --> ~H |
||
| Assertion | hodsi | |- ( ( R -op S ) = T <-> ( S +op T ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | |- R : ~H --> ~H |
|
| 2 | hods.2 | |- S : ~H --> ~H |
|
| 3 | hods.3 | |- T : ~H --> ~H |
|
| 4 | 1 | ffvelcdmi | |- ( x e. ~H -> ( R ` x ) e. ~H ) |
| 5 | 2 | ffvelcdmi | |- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 6 | 3 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 7 | hvsubadd | |- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( x e. ~H -> ( ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
| 9 | hodval | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
|
| 10 | 1 2 9 | mp3an12 | |- ( x e. ~H -> ( ( R -op S ) ` x ) = ( ( R ` x ) -h ( S ` x ) ) ) |
| 11 | 10 | eqeq1d | |- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( R ` x ) -h ( S ` x ) ) = ( T ` x ) ) ) |
| 12 | hosval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
|
| 13 | 2 3 12 | mp3an12 | |- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 14 | 13 | eqeq1d | |- ( x e. ~H -> ( ( ( S +op T ) ` x ) = ( R ` x ) <-> ( ( S ` x ) +h ( T ` x ) ) = ( R ` x ) ) ) |
| 15 | 8 11 14 | 3bitr4d | |- ( x e. ~H -> ( ( ( R -op S ) ` x ) = ( T ` x ) <-> ( ( S +op T ) ` x ) = ( R ` x ) ) ) |
| 16 | 15 | ralbiia | |- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) ) |
| 17 | 1 2 | hosubcli | |- ( R -op S ) : ~H --> ~H |
| 18 | 17 3 | hoeqi | |- ( A. x e. ~H ( ( R -op S ) ` x ) = ( T ` x ) <-> ( R -op S ) = T ) |
| 19 | 2 3 | hoaddcli | |- ( S +op T ) : ~H --> ~H |
| 20 | 19 1 | hoeqi | |- ( A. x e. ~H ( ( S +op T ) ` x ) = ( R ` x ) <-> ( S +op T ) = R ) |
| 21 | 16 18 20 | 3bitr3i | |- ( ( R -op S ) = T <-> ( S +op T ) = R ) |