This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in Halmos p. 41. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopadj2 | ⊢ ( 𝑇 ∈ dom adjℎ → ( 𝑇 ∈ HrmOp ↔ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopadj | ⊢ ( 𝑇 ∈ HrmOp → ( adjℎ ‘ 𝑇 ) = 𝑇 ) | |
| 2 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → 𝑇 : ℋ ⟶ ℋ ) |
| 4 | adj1 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 7 | fveq1 | ⊢ ( ( adjℎ ‘ 𝑇 ) = 𝑇 → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 8 | 7 | oveq1d | ⊢ ( ( adjℎ ‘ 𝑇 ) = 𝑇 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 11 | 10 | ralrimivva | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 12 | elhmop | ⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 13 | 3 11 12 | sylanbrc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → 𝑇 ∈ HrmOp ) |
| 14 | 13 | ex | ⊢ ( 𝑇 ∈ dom adjℎ → ( ( adjℎ ‘ 𝑇 ) = 𝑇 → 𝑇 ∈ HrmOp ) ) |
| 15 | 1 14 | impbid2 | ⊢ ( 𝑇 ∈ dom adjℎ → ( 𝑇 ∈ HrmOp ↔ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ) |