This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj1 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj | ⊢ Fun adjℎ | |
| 2 | funfvop | ⊢ ( ( Fun adjℎ ∧ 𝑇 ∈ dom adjℎ ) → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ adjℎ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑇 ∈ dom adjℎ → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ adjℎ ) |
| 4 | dfadj2 | ⊢ adjℎ = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } | |
| 5 | 3 4 | eleqtrdi | ⊢ ( 𝑇 ∈ dom adjℎ → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ) |
| 6 | fvex | ⊢ ( adjℎ ‘ 𝑇 ) ∈ V | |
| 7 | feq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) ) | |
| 8 | fveq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑧 = 𝑇 → ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 11 | 10 | 2ralbidv | ⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 12 | 7 11 | 3anbi13d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 13 | feq1 | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( 𝑤 : ℋ ⟶ ℋ ↔ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) ) | |
| 14 | fveq1 | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( 𝑤 ‘ 𝑥 ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 17 | 16 | 2ralbidv | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 18 | 13 17 | 3anbi23d | ⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 19 | 12 18 | opelopabg | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ V ) → ( 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 20 | 6 19 | mpan2 | ⊢ ( 𝑇 ∈ dom adjℎ → ( 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 21 | 5 20 | mpbid | ⊢ ( 𝑇 ∈ dom adjℎ → ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 22 | 21 | simp3d | ⊢ ( 𝑇 ∈ dom adjℎ → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 23 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) | |
| 25 | 24 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ) ) |
| 27 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 29 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 31 | 26 30 | rspc2v | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 32 | 22 31 | syl5com | ⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 33 | 32 | 3impib | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) |