This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmoplin | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | simplll | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑇 ∈ HrmOp ) | |
| 3 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 4 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 7 | 6 | adantr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 8 | simpr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ ) | |
| 9 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) ) | |
| 10 | 9 | eqcomd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 11 | 2 7 8 10 | syl3anc | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 12 | simprl | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℂ ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑥 ∈ ℂ ) |
| 14 | simprr | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑦 ∈ ℋ ) |
| 16 | simplr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑧 ∈ ℋ ) | |
| 17 | 1 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 19 | 18 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 20 | hiassdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) | |
| 21 | 13 15 16 19 20 | syl22anc | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
| 22 | 1 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 23 | 22 | adantrl | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 25 | 1 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 27 | 26 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 28 | hiassdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ∧ ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) | |
| 29 | 13 24 27 8 28 | syl22anc | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) |
| 30 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) | |
| 31 | 30 | eqcomd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 32 | 31 | 3expa | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
| 34 | 33 | adantlrl | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
| 35 | 34 | adantlr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
| 36 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) | |
| 37 | 36 | eqcomd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 38 | 37 | 3expa | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 39 | 38 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
| 40 | 35 39 | oveq12d | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
| 41 | 29 40 | eqtr2d | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 42 | 11 21 41 | 3eqtrd | ⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 43 | 42 | ralrimiva | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 44 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) | |
| 45 | 5 44 | sylan2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 46 | 45 | anassrs | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 47 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 48 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) | |
| 49 | 47 48 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 50 | 49 | an12s | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 52 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) | |
| 53 | 52 | adantlr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 54 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) | |
| 55 | 51 53 54 | syl2anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) |
| 56 | hial2eq | ⊢ ( ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 57 | 46 55 56 | syl2anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 58 | 1 57 | sylanl1 | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 59 | 43 58 | mpbid | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 61 | 60 | ralrimivva | ⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 62 | ellnop | ⊢ ( 𝑇 ∈ LinOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 63 | 1 61 62 | sylanbrc | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |