This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in Halmos p. 41. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopadj2 | |- ( T e. dom adjh -> ( T e. HrmOp <-> ( adjh ` T ) = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopadj | |- ( T e. HrmOp -> ( adjh ` T ) = T ) |
|
| 2 | dmadjop | |- ( T e. dom adjh -> T : ~H --> ~H ) |
|
| 3 | 2 | adantr | |- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> T : ~H --> ~H ) |
| 4 | adj1 | |- ( ( T e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
|
| 5 | 4 | 3expb | |- ( ( T e. dom adjh /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 6 | 5 | adantlr | |- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 7 | fveq1 | |- ( ( adjh ` T ) = T -> ( ( adjh ` T ) ` x ) = ( T ` x ) ) |
|
| 8 | 7 | oveq1d | |- ( ( adjh ` T ) = T -> ( ( ( adjh ` T ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 9 | 8 | ad2antlr | |- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( ( adjh ` T ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 10 | 6 9 | eqtrd | |- ( ( ( T e. dom adjh /\ ( adjh ` T ) = T ) /\ ( x e. ~H /\ y e. ~H ) ) -> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 11 | 10 | ralrimivva | |- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 12 | elhmop | |- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
|
| 13 | 3 11 12 | sylanbrc | |- ( ( T e. dom adjh /\ ( adjh ` T ) = T ) -> T e. HrmOp ) |
| 14 | 13 | ex | |- ( T e. dom adjh -> ( ( adjh ` T ) = T -> T e. HrmOp ) ) |
| 15 | 1 14 | impbid2 | |- ( T e. dom adjh -> ( T e. HrmOp <-> ( adjh ` T ) = T ) ) |