This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeoco |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | ||
| 2 | hmeocn | ||
| 3 | cnco | ||
| 4 | 1 2 3 | syl2an | |
| 5 | cnvco | ||
| 6 | hmeocnvcn | ||
| 7 | hmeocnvcn | ||
| 8 | cnco | ||
| 9 | 6 7 8 | syl2anr | |
| 10 | 5 9 | eqeltrid | |
| 11 | ishmeo | ||
| 12 | 4 10 11 | sylanbrc |