This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeoco | |- ( ( F e. ( J Homeo K ) /\ G e. ( K Homeo L ) ) -> ( G o. F ) e. ( J Homeo L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 2 | hmeocn | |- ( G e. ( K Homeo L ) -> G e. ( K Cn L ) ) |
|
| 3 | cnco | |- ( ( F e. ( J Cn K ) /\ G e. ( K Cn L ) ) -> ( G o. F ) e. ( J Cn L ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( J Homeo K ) /\ G e. ( K Homeo L ) ) -> ( G o. F ) e. ( J Cn L ) ) |
| 5 | cnvco | |- `' ( G o. F ) = ( `' F o. `' G ) |
|
| 6 | hmeocnvcn | |- ( G e. ( K Homeo L ) -> `' G e. ( L Cn K ) ) |
|
| 7 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 8 | cnco | |- ( ( `' G e. ( L Cn K ) /\ `' F e. ( K Cn J ) ) -> ( `' F o. `' G ) e. ( L Cn J ) ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( F e. ( J Homeo K ) /\ G e. ( K Homeo L ) ) -> ( `' F o. `' G ) e. ( L Cn J ) ) |
| 10 | 5 9 | eqeltrid | |- ( ( F e. ( J Homeo K ) /\ G e. ( K Homeo L ) ) -> `' ( G o. F ) e. ( L Cn J ) ) |
| 11 | ishmeo | |- ( ( G o. F ) e. ( J Homeo L ) <-> ( ( G o. F ) e. ( J Cn L ) /\ `' ( G o. F ) e. ( L Cn J ) ) ) |
|
| 12 | 4 10 11 | sylanbrc | |- ( ( F e. ( J Homeo K ) /\ G e. ( K Homeo L ) ) -> ( G o. F ) e. ( J Homeo L ) ) |