This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhss.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| Assertion | hhsssm | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) = ( ·𝑠OLD ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhss.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 3 | 2 | smfval | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( 2nd ‘ ( 1st ‘ 𝑊 ) ) |
| 4 | 1 | fveq2i | ⊢ ( 1st ‘ 𝑊 ) = ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
| 5 | opex | ⊢ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ∈ V | |
| 6 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 7 | ax-hilex | ⊢ ℋ ∈ V | |
| 8 | fex | ⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → normℎ ∈ V ) | |
| 9 | 6 7 8 | mp2an | ⊢ normℎ ∈ V |
| 10 | 9 | resex | ⊢ ( normℎ ↾ 𝐻 ) ∈ V |
| 11 | 5 10 | op1st | ⊢ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 |
| 12 | 4 11 | eqtri | ⊢ ( 1st ‘ 𝑊 ) = 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 |
| 13 | 12 | fveq2i | ⊢ ( 2nd ‘ ( 1st ‘ 𝑊 ) ) = ( 2nd ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) |
| 14 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 15 | resexg | ⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V ) | |
| 16 | 14 15 | ax-mp | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V |
| 17 | hvmulex | ⊢ ·ℎ ∈ V | |
| 18 | 17 | resex | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ∈ V |
| 19 | 16 18 | op2nd | ⊢ ( 2nd ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) = ( ·ℎ ↾ ( ℂ × 𝐻 ) ) |
| 20 | 3 13 19 | 3eqtrri | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) = ( ·𝑠OLD ‘ 𝑊 ) |