This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hausflf.x | |- X = U. J |
|
| Assertion | hausflf | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> E* x x e. ( ( J fLimf L ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hausflf.x | |- X = U. J |
|
| 2 | hausflimi | |- ( J e. Haus -> E* x x e. ( J fLim ( ( X FilMap F ) ` L ) ) ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> E* x x e. ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 4 | haustop | |- ( J e. Haus -> J e. Top ) |
|
| 5 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 6 | 4 5 | sylib | |- ( J e. Haus -> J e. ( TopOn ` X ) ) |
| 7 | flfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
|
| 8 | 6 7 | syl3an1 | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 9 | 8 | eleq2d | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( x e. ( ( J fLimf L ) ` F ) <-> x e. ( J fLim ( ( X FilMap F ) ` L ) ) ) ) |
| 10 | 9 | mobidv | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( E* x x e. ( ( J fLimf L ) ` F ) <-> E* x x e. ( J fLim ( ( X FilMap F ) ` L ) ) ) ) |
| 11 | 3 10 | mpbird | |- ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> E* x x e. ( ( J fLimf L ) ` F ) ) |