This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hauseqlcld.k | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| hauseqlcld.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| hauseqlcld.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | hauseqlcld | ⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauseqlcld.k | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 2 | hauseqlcld.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | hauseqlcld.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 4 5 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( 𝐹 ‘ 𝑏 ) ∈ ∪ 𝐾 ) |
| 9 | 8 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ I ↔ ( ( 𝐹 ‘ 𝑏 ) ∈ ∪ 𝐾 ∧ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ I ) ) ) |
| 10 | fvex | ⊢ ( 𝐺 ‘ 𝑏 ) ∈ V | |
| 11 | 10 | ideq | ⊢ ( ( 𝐹 ‘ 𝑏 ) I ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ) |
| 12 | df-br | ⊢ ( ( 𝐹 ‘ 𝑏 ) I ( 𝐺 ‘ 𝑏 ) ↔ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ I ) | |
| 13 | 11 12 | bitr3i | ⊢ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ↔ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ I ) |
| 14 | 10 | opelresi | ⊢ ( 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ ( I ↾ ∪ 𝐾 ) ↔ ( ( 𝐹 ‘ 𝑏 ) ∈ ∪ 𝐾 ∧ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ I ) ) |
| 15 | 9 13 14 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ↔ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ ( I ↾ ∪ 𝐾 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ 𝑏 ) ) | |
| 18 | 16 17 | opeq12d | ⊢ ( 𝑎 = 𝑏 → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 = 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 19 | eqid | ⊢ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) = ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) | |
| 20 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ V | |
| 21 | 18 19 20 | fvmpt | ⊢ ( 𝑏 ∈ ∪ 𝐽 → ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) = 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) = 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 23 | 22 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) ∈ ( I ↾ ∪ 𝐾 ) ↔ 〈 ( 𝐹 ‘ 𝑏 ) , ( 𝐺 ‘ 𝑏 ) 〉 ∈ ( I ↾ ∪ 𝐾 ) ) ) |
| 24 | 15 23 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ 𝐽 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ↔ ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) ∈ ( I ↾ ∪ 𝐾 ) ) ) |
| 25 | 24 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑏 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝑏 ∈ ∪ 𝐽 ∧ ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) ∈ ( I ↾ ∪ 𝐾 ) ) ) ) |
| 26 | 7 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ∪ 𝐽 ) |
| 27 | 4 5 | cnf | ⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 28 | 3 27 | syl | ⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 29 | 28 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ∪ 𝐽 ) |
| 30 | fndmin | ⊢ ( ( 𝐹 Fn ∪ 𝐽 ∧ 𝐺 Fn ∪ 𝐽 ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑏 ∈ ∪ 𝐽 ∣ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) } ) | |
| 31 | 26 29 30 | syl2anc | ⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) = { 𝑏 ∈ ∪ 𝐽 ∣ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) } ) |
| 32 | 31 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ 𝑏 ∈ { 𝑏 ∈ ∪ 𝐽 ∣ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) } ) ) |
| 33 | rabid | ⊢ ( 𝑏 ∈ { 𝑏 ∈ ∪ 𝐽 ∣ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) } ↔ ( 𝑏 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ) ) | |
| 34 | 32 33 | bitrdi | ⊢ ( 𝜑 → ( 𝑏 ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ( 𝑏 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 35 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ V | |
| 36 | 35 19 | fnmpti | ⊢ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) Fn ∪ 𝐽 |
| 37 | elpreima | ⊢ ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) Fn ∪ 𝐽 → ( 𝑏 ∈ ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ↔ ( 𝑏 ∈ ∪ 𝐽 ∧ ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) ∈ ( I ↾ ∪ 𝐾 ) ) ) ) | |
| 38 | 36 37 | mp1i | ⊢ ( 𝜑 → ( 𝑏 ∈ ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ↔ ( 𝑏 ∈ ∪ 𝐽 ∧ ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ‘ 𝑏 ) ∈ ( I ↾ ∪ 𝐾 ) ) ) ) |
| 39 | 25 34 38 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑏 ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ 𝑏 ∈ ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ) ) |
| 40 | 39 | eqrdv | ⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) = ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ) |
| 41 | 4 19 | txcnmpt | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐾 ) ) ) |
| 42 | 2 3 41 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐾 ) ) ) |
| 43 | 5 | hausdiag | ⊢ ( 𝐾 ∈ Haus ↔ ( 𝐾 ∈ Top ∧ ( I ↾ ∪ 𝐾 ) ∈ ( Clsd ‘ ( 𝐾 ×t 𝐾 ) ) ) ) |
| 44 | 43 | simprbi | ⊢ ( 𝐾 ∈ Haus → ( I ↾ ∪ 𝐾 ) ∈ ( Clsd ‘ ( 𝐾 ×t 𝐾 ) ) ) |
| 45 | 1 44 | syl | ⊢ ( 𝜑 → ( I ↾ ∪ 𝐾 ) ∈ ( Clsd ‘ ( 𝐾 ×t 𝐾 ) ) ) |
| 46 | cnclima | ⊢ ( ( ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐾 ) ) ∧ ( I ↾ ∪ 𝐾 ) ∈ ( Clsd ‘ ( 𝐾 ×t 𝐾 ) ) ) → ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 47 | 42 45 46 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑎 ∈ ∪ 𝐽 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) “ ( I ↾ ∪ 𝐾 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 48 | 40 47 | eqeltrd | ⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) ∈ ( Clsd ‘ 𝐽 ) ) |