This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashunlei.c | ⊢ 𝐶 = ( 𝐴 ∪ 𝐵 ) | |
| hashunlei.a | ⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝐾 ) | ||
| hashunlei.b | ⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑀 ) | ||
| hashunlei.k | ⊢ 𝐾 ∈ ℕ0 | ||
| hashunlei.m | ⊢ 𝑀 ∈ ℕ0 | ||
| hashunlei.n | ⊢ ( 𝐾 + 𝑀 ) = 𝑁 | ||
| Assertion | hashunlei | ⊢ ( 𝐶 ∈ Fin ∧ ( ♯ ‘ 𝐶 ) ≤ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashunlei.c | ⊢ 𝐶 = ( 𝐴 ∪ 𝐵 ) | |
| 2 | hashunlei.a | ⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝐾 ) | |
| 3 | hashunlei.b | ⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑀 ) | |
| 4 | hashunlei.k | ⊢ 𝐾 ∈ ℕ0 | |
| 5 | hashunlei.m | ⊢ 𝑀 ∈ ℕ0 | |
| 6 | hashunlei.n | ⊢ ( 𝐾 + 𝑀 ) = 𝑁 | |
| 7 | 2 | simpli | ⊢ 𝐴 ∈ Fin |
| 8 | 3 | simpli | ⊢ 𝐵 ∈ Fin |
| 9 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( 𝐴 ∪ 𝐵 ) ∈ Fin |
| 11 | 1 10 | eqeltri | ⊢ 𝐶 ∈ Fin |
| 12 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 13 | hashun2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 14 | 7 8 13 | mp2an | ⊢ ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) |
| 15 | 12 14 | eqbrtri | ⊢ ( ♯ ‘ 𝐶 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) |
| 16 | 2 | simpri | ⊢ ( ♯ ‘ 𝐴 ) ≤ 𝐾 |
| 17 | 3 | simpri | ⊢ ( ♯ ‘ 𝐵 ) ≤ 𝑀 |
| 18 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 19 | 7 18 | ax-mp | ⊢ ( ♯ ‘ 𝐴 ) ∈ ℕ0 |
| 20 | 19 | nn0rei | ⊢ ( ♯ ‘ 𝐴 ) ∈ ℝ |
| 21 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 22 | 8 21 | ax-mp | ⊢ ( ♯ ‘ 𝐵 ) ∈ ℕ0 |
| 23 | 22 | nn0rei | ⊢ ( ♯ ‘ 𝐵 ) ∈ ℝ |
| 24 | 4 | nn0rei | ⊢ 𝐾 ∈ ℝ |
| 25 | 5 | nn0rei | ⊢ 𝑀 ∈ ℝ |
| 26 | 20 23 24 25 | le2addi | ⊢ ( ( ( ♯ ‘ 𝐴 ) ≤ 𝐾 ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑀 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ ( 𝐾 + 𝑀 ) ) |
| 27 | 16 17 26 | mp2an | ⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ ( 𝐾 + 𝑀 ) |
| 28 | 27 6 | breqtri | ⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝑁 |
| 29 | hashcl | ⊢ ( 𝐶 ∈ Fin → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) | |
| 30 | 11 29 | ax-mp | ⊢ ( ♯ ‘ 𝐶 ) ∈ ℕ0 |
| 31 | 30 | nn0rei | ⊢ ( ♯ ‘ 𝐶 ) ∈ ℝ |
| 32 | 20 23 | readdcli | ⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ |
| 33 | 24 25 | readdcli | ⊢ ( 𝐾 + 𝑀 ) ∈ ℝ |
| 34 | 6 33 | eqeltrri | ⊢ 𝑁 ∈ ℝ |
| 35 | 31 32 34 | letri | ⊢ ( ( ( ♯ ‘ 𝐶 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝑁 ) → ( ♯ ‘ 𝐶 ) ≤ 𝑁 ) |
| 36 | 15 28 35 | mp2an | ⊢ ( ♯ ‘ 𝐶 ) ≤ 𝑁 |
| 37 | 11 36 | pm3.2i | ⊢ ( 𝐶 ∈ Fin ∧ ( ♯ ‘ 𝐶 ) ≤ 𝑁 ) |