This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashunlei.c | |- C = ( A u. B ) |
|
| hashunlei.a | |- ( A e. Fin /\ ( # ` A ) <_ K ) |
||
| hashunlei.b | |- ( B e. Fin /\ ( # ` B ) <_ M ) |
||
| hashunlei.k | |- K e. NN0 |
||
| hashunlei.m | |- M e. NN0 |
||
| hashunlei.n | |- ( K + M ) = N |
||
| Assertion | hashunlei | |- ( C e. Fin /\ ( # ` C ) <_ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashunlei.c | |- C = ( A u. B ) |
|
| 2 | hashunlei.a | |- ( A e. Fin /\ ( # ` A ) <_ K ) |
|
| 3 | hashunlei.b | |- ( B e. Fin /\ ( # ` B ) <_ M ) |
|
| 4 | hashunlei.k | |- K e. NN0 |
|
| 5 | hashunlei.m | |- M e. NN0 |
|
| 6 | hashunlei.n | |- ( K + M ) = N |
|
| 7 | 2 | simpli | |- A e. Fin |
| 8 | 3 | simpli | |- B e. Fin |
| 9 | unfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
|
| 10 | 7 8 9 | mp2an | |- ( A u. B ) e. Fin |
| 11 | 1 10 | eqeltri | |- C e. Fin |
| 12 | 1 | fveq2i | |- ( # ` C ) = ( # ` ( A u. B ) ) |
| 13 | hashun2 | |- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
|
| 14 | 7 8 13 | mp2an | |- ( # ` ( A u. B ) ) <_ ( ( # ` A ) + ( # ` B ) ) |
| 15 | 12 14 | eqbrtri | |- ( # ` C ) <_ ( ( # ` A ) + ( # ` B ) ) |
| 16 | 2 | simpri | |- ( # ` A ) <_ K |
| 17 | 3 | simpri | |- ( # ` B ) <_ M |
| 18 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 19 | 7 18 | ax-mp | |- ( # ` A ) e. NN0 |
| 20 | 19 | nn0rei | |- ( # ` A ) e. RR |
| 21 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 22 | 8 21 | ax-mp | |- ( # ` B ) e. NN0 |
| 23 | 22 | nn0rei | |- ( # ` B ) e. RR |
| 24 | 4 | nn0rei | |- K e. RR |
| 25 | 5 | nn0rei | |- M e. RR |
| 26 | 20 23 24 25 | le2addi | |- ( ( ( # ` A ) <_ K /\ ( # ` B ) <_ M ) -> ( ( # ` A ) + ( # ` B ) ) <_ ( K + M ) ) |
| 27 | 16 17 26 | mp2an | |- ( ( # ` A ) + ( # ` B ) ) <_ ( K + M ) |
| 28 | 27 6 | breqtri | |- ( ( # ` A ) + ( # ` B ) ) <_ N |
| 29 | hashcl | |- ( C e. Fin -> ( # ` C ) e. NN0 ) |
|
| 30 | 11 29 | ax-mp | |- ( # ` C ) e. NN0 |
| 31 | 30 | nn0rei | |- ( # ` C ) e. RR |
| 32 | 20 23 | readdcli | |- ( ( # ` A ) + ( # ` B ) ) e. RR |
| 33 | 24 25 | readdcli | |- ( K + M ) e. RR |
| 34 | 6 33 | eqeltrri | |- N e. RR |
| 35 | 31 32 34 | letri | |- ( ( ( # ` C ) <_ ( ( # ` A ) + ( # ` B ) ) /\ ( ( # ` A ) + ( # ` B ) ) <_ N ) -> ( # ` C ) <_ N ) |
| 36 | 15 28 35 | mp2an | |- ( # ` C ) <_ N |
| 37 | 11 36 | pm3.2i | |- ( C e. Fin /\ ( # ` C ) <_ N ) |