This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both side of two inequalities. (Contributed by NM, 16-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
| lt2.2 | ⊢ 𝐵 ∈ ℝ | ||
| lt2.3 | ⊢ 𝐶 ∈ ℝ | ||
| lt.4 | ⊢ 𝐷 ∈ ℝ | ||
| Assertion | le2addi | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt2.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | lt2.3 | ⊢ 𝐶 ∈ ℝ | |
| 4 | lt.4 | ⊢ 𝐷 ∈ ℝ | |
| 5 | le2add | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) | |
| 6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |