This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashsslei.b | ⊢ 𝐵 ⊆ 𝐴 | |
| hashsslei.a | ⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝑁 ) | ||
| hashsslei.n | ⊢ 𝑁 ∈ ℕ0 | ||
| Assertion | hashsslei | ⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashsslei.b | ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | hashsslei.a | ⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝑁 ) | |
| 3 | hashsslei.n | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | 2 | simpli | ⊢ 𝐴 ∈ Fin |
| 5 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 6 | 4 1 5 | mp2an | ⊢ 𝐵 ∈ Fin |
| 7 | ssdomg | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) | |
| 8 | 4 1 7 | mp2 | ⊢ 𝐵 ≼ 𝐴 |
| 9 | hashdom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) | |
| 10 | 6 4 9 | mp2an | ⊢ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) |
| 11 | 8 10 | mpbir | ⊢ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) |
| 12 | 2 | simpri | ⊢ ( ♯ ‘ 𝐴 ) ≤ 𝑁 |
| 13 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 14 | 6 13 | ax-mp | ⊢ ( ♯ ‘ 𝐵 ) ∈ ℕ0 |
| 15 | 14 | nn0rei | ⊢ ( ♯ ‘ 𝐵 ) ∈ ℝ |
| 16 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 17 | 4 16 | ax-mp | ⊢ ( ♯ ‘ 𝐴 ) ∈ ℕ0 |
| 18 | 17 | nn0rei | ⊢ ( ♯ ‘ 𝐴 ) ∈ ℝ |
| 19 | 3 | nn0rei | ⊢ 𝑁 ∈ ℝ |
| 20 | 15 18 19 | letri | ⊢ ( ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≤ 𝑁 ) → ( ♯ ‘ 𝐵 ) ≤ 𝑁 ) |
| 21 | 11 12 20 | mp2an | ⊢ ( ♯ ‘ 𝐵 ) ≤ 𝑁 |
| 22 | 6 21 | pm3.2i | ⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑁 ) |