This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013) (Proof shortened by Mario Carneiro, 27-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashun2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 2 | 1 | fveq2i | ⊢ ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 3 | diffi | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) | |
| 4 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
| 5 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) | |
| 6 | 4 5 | mp3an3 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 7 | 3 6 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 8 | 2 7 | eqtr3id | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 9 | 3 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) |
| 10 | hashcl | ⊢ ( ( 𝐵 ∖ 𝐴 ) ∈ Fin → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) |
| 12 | 11 | nn0red | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℝ ) |
| 13 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 15 | 14 | nn0red | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 16 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 18 | 17 | nn0red | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 19 | simpr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ Fin ) | |
| 20 | difss | ⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 | |
| 21 | ssdomg | ⊢ ( 𝐵 ∈ Fin → ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≼ 𝐵 ) ) | |
| 22 | 19 20 21 | mpisyl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ∖ 𝐴 ) ≼ 𝐵 ) |
| 23 | hashdom | ⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝐵 ∖ 𝐴 ) ≼ 𝐵 ) ) | |
| 24 | 9 23 | sylancom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝐵 ∖ 𝐴 ) ≼ 𝐵 ) ) |
| 25 | 22 24 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 26 | 12 15 18 25 | leadd2dd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 27 | 8 26 | eqbrtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |