This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashssdif | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 2 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ 𝐵 ) ∈ Fin ) | |
| 3 | disjdif | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ | |
| 4 | hashun | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∖ 𝐵 ) ∈ Fin ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 6 | 1 2 5 | syl2an | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 7 | 6 | anabss1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 8 | undif | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) | |
| 9 | 8 | biimpi | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 10 | 9 | fveqeq2d | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 12 | 7 11 | mpbid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) |
| 14 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 15 | 14 | nn0cnd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 16 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 17 | 1 16 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 18 | 17 | nn0cnd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 19 | hashcl | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℕ0 ) | |
| 20 | 2 19 | syl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℕ0 ) |
| 21 | 20 | nn0cnd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
| 22 | subadd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ∧ ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) | |
| 23 | 15 18 21 22 | syl3an | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
| 24 | 23 | 3anidm13 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
| 25 | 24 | anabss5 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
| 26 | 13 25 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) |