This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashssdif | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
|
| 2 | diffi | |- ( A e. Fin -> ( A \ B ) e. Fin ) |
|
| 3 | disjdif | |- ( B i^i ( A \ B ) ) = (/) |
|
| 4 | hashun | |- ( ( B e. Fin /\ ( A \ B ) e. Fin /\ ( B i^i ( A \ B ) ) = (/) ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( B e. Fin /\ ( A \ B ) e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
| 6 | 1 2 5 | syl2an | |- ( ( ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
| 7 | 6 | anabss1 | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
| 8 | undif | |- ( B C_ A <-> ( B u. ( A \ B ) ) = A ) |
|
| 9 | 8 | biimpi | |- ( B C_ A -> ( B u. ( A \ B ) ) = A ) |
| 10 | 9 | fveqeq2d | |- ( B C_ A -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) |
| 11 | 10 | adantl | |- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) |
| 12 | 7 11 | mpbid | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
| 13 | 12 | eqcomd | |- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) |
| 14 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 15 | 14 | nn0cnd | |- ( A e. Fin -> ( # ` A ) e. CC ) |
| 16 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 17 | 1 16 | syl | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. NN0 ) |
| 18 | 17 | nn0cnd | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. CC ) |
| 19 | hashcl | |- ( ( A \ B ) e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) |
|
| 20 | 2 19 | syl | |- ( A e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) |
| 21 | 20 | nn0cnd | |- ( A e. Fin -> ( # ` ( A \ B ) ) e. CC ) |
| 22 | subadd | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC /\ ( # ` ( A \ B ) ) e. CC ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
|
| 23 | 15 18 21 22 | syl3an | |- ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
| 24 | 23 | 3anidm13 | |- ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
| 25 | 24 | anabss5 | |- ( ( A e. Fin /\ B C_ A ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
| 26 | 13 25 | mpbird | |- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) ) |
| 27 | 26 | eqcomd | |- ( ( A e. Fin /\ B C_ A ) -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` B ) ) ) |