This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnn0n0nn | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑌 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 𝑁 ∈ 𝑉 → 𝑉 ≠ ∅ ) | |
| 2 | hashge1 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) |
| 4 | simpr | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 5 | 0lt1 | ⊢ 0 < 1 | |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | 6 7 | ltnlei | ⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
| 9 | 5 8 | mpbi | ⊢ ¬ 1 ≤ 0 |
| 10 | breq2 | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 ≤ ( ♯ ‘ 𝑉 ) ↔ 1 ≤ 0 ) ) | |
| 11 | 9 10 | mtbiri | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ¬ 1 ≤ ( ♯ ‘ 𝑉 ) ) |
| 12 | 11 | necon2ai | ⊢ ( 1 ≤ ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
| 13 | 12 | adantr | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
| 14 | elnnne0 | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) ) | |
| 15 | 4 13 14 | sylanbrc | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) |
| 16 | 15 | ex | ⊢ ( 1 ≤ ( ♯ ‘ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
| 17 | 3 16 | syl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
| 18 | 17 | impancom | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( 𝑁 ∈ 𝑉 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
| 19 | 18 | com12 | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
| 20 | eleq1 | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ↔ ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) ) ) |
| 22 | eleq1 | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ 𝑌 ∈ ℕ ) ) | |
| 23 | 21 22 | imbi12d | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ↔ ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) ) |
| 24 | 19 23 | imbitrid | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑁 ∈ 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) |
| 26 | 25 | impcom | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑌 ∈ ℕ ) |