This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashge1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) | |
| 3 | hashnncl | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) | |
| 4 | 3 | biimpar | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 5 | 1 2 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 6 | 5 | nnge1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
| 7 | 1xr | ⊢ 1 ∈ ℝ* | |
| 8 | pnfge | ⊢ ( 1 ∈ ℝ* → 1 ≤ +∞ ) | |
| 9 | 7 8 | ax-mp | ⊢ 1 ≤ +∞ |
| 10 | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 12 | 9 11 | breqtrrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ ¬ 𝐴 ∈ Fin ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
| 13 | 6 12 | pm2.61dan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |