This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnn0n0nn | |- ( ( ( V e. W /\ Y e. NN0 ) /\ ( ( # ` V ) = Y /\ N e. V ) ) -> Y e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( N e. V -> V =/= (/) ) |
|
| 2 | hashge1 | |- ( ( V e. W /\ V =/= (/) ) -> 1 <_ ( # ` V ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( V e. W /\ N e. V ) -> 1 <_ ( # ` V ) ) |
| 4 | simpr | |- ( ( 1 <_ ( # ` V ) /\ ( # ` V ) e. NN0 ) -> ( # ` V ) e. NN0 ) |
|
| 5 | 0lt1 | |- 0 < 1 |
|
| 6 | 0re | |- 0 e. RR |
|
| 7 | 1re | |- 1 e. RR |
|
| 8 | 6 7 | ltnlei | |- ( 0 < 1 <-> -. 1 <_ 0 ) |
| 9 | 5 8 | mpbi | |- -. 1 <_ 0 |
| 10 | breq2 | |- ( ( # ` V ) = 0 -> ( 1 <_ ( # ` V ) <-> 1 <_ 0 ) ) |
|
| 11 | 9 10 | mtbiri | |- ( ( # ` V ) = 0 -> -. 1 <_ ( # ` V ) ) |
| 12 | 11 | necon2ai | |- ( 1 <_ ( # ` V ) -> ( # ` V ) =/= 0 ) |
| 13 | 12 | adantr | |- ( ( 1 <_ ( # ` V ) /\ ( # ` V ) e. NN0 ) -> ( # ` V ) =/= 0 ) |
| 14 | elnnne0 | |- ( ( # ` V ) e. NN <-> ( ( # ` V ) e. NN0 /\ ( # ` V ) =/= 0 ) ) |
|
| 15 | 4 13 14 | sylanbrc | |- ( ( 1 <_ ( # ` V ) /\ ( # ` V ) e. NN0 ) -> ( # ` V ) e. NN ) |
| 16 | 15 | ex | |- ( 1 <_ ( # ` V ) -> ( ( # ` V ) e. NN0 -> ( # ` V ) e. NN ) ) |
| 17 | 3 16 | syl | |- ( ( V e. W /\ N e. V ) -> ( ( # ` V ) e. NN0 -> ( # ` V ) e. NN ) ) |
| 18 | 17 | impancom | |- ( ( V e. W /\ ( # ` V ) e. NN0 ) -> ( N e. V -> ( # ` V ) e. NN ) ) |
| 19 | 18 | com12 | |- ( N e. V -> ( ( V e. W /\ ( # ` V ) e. NN0 ) -> ( # ` V ) e. NN ) ) |
| 20 | eleq1 | |- ( ( # ` V ) = Y -> ( ( # ` V ) e. NN0 <-> Y e. NN0 ) ) |
|
| 21 | 20 | anbi2d | |- ( ( # ` V ) = Y -> ( ( V e. W /\ ( # ` V ) e. NN0 ) <-> ( V e. W /\ Y e. NN0 ) ) ) |
| 22 | eleq1 | |- ( ( # ` V ) = Y -> ( ( # ` V ) e. NN <-> Y e. NN ) ) |
|
| 23 | 21 22 | imbi12d | |- ( ( # ` V ) = Y -> ( ( ( V e. W /\ ( # ` V ) e. NN0 ) -> ( # ` V ) e. NN ) <-> ( ( V e. W /\ Y e. NN0 ) -> Y e. NN ) ) ) |
| 24 | 19 23 | imbitrid | |- ( ( # ` V ) = Y -> ( N e. V -> ( ( V e. W /\ Y e. NN0 ) -> Y e. NN ) ) ) |
| 25 | 24 | imp | |- ( ( ( # ` V ) = Y /\ N e. V ) -> ( ( V e. W /\ Y e. NN0 ) -> Y e. NN ) ) |
| 26 | 25 | impcom | |- ( ( ( V e. W /\ Y e. NN0 ) /\ ( ( # ` V ) = Y /\ N e. V ) ) -> Y e. NN ) |