This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashneq0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | ||
| 2 | nn0re | ||
| 3 | nn0ge0 | ||
| 4 | ne0gt0 | ||
| 5 | 2 3 4 | syl2anc | |
| 6 | 5 | bicomd | |
| 7 | breq2 | ||
| 8 | 0ltpnf | ||
| 9 | 0re | ||
| 10 | renepnf | ||
| 11 | 9 10 | ax-mp | |
| 12 | 11 | necomi | |
| 13 | 8 12 | 2th | |
| 14 | neeq1 | ||
| 15 | 13 14 | bitr4id | |
| 16 | 7 15 | bitrd | |
| 17 | 6 16 | jaoi | |
| 18 | 1 17 | syl | |
| 19 | hasheq0 | ||
| 20 | 19 | necon3bid | |
| 21 | 18 20 | bitrd |