This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ne0gt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | lttri2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 5 | lenlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) | |
| 6 | 1 5 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
| 7 | 6 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ¬ 𝐴 < 0 ) |
| 8 | biorf | ⊢ ( ¬ 𝐴 < 0 → ( 0 < 𝐴 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 0 < 𝐴 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 10 | 4 9 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |