This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashle2pr | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅ ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxnn0 | ⊢ ( 𝑃 ∈ 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0* ) | |
| 2 | xnn0le2is012 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0* ∧ ( ♯ ‘ 𝑃 ) ≤ 2 ) → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ ( ♯ ‘ 𝑃 ) = 2 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) ≤ 2 ) → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 4 | 3 | ex | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) ≤ 2 → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ ( ♯ ‘ 𝑃 ) = 2 ) ) ) |
| 5 | hasheq0 | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) ) | |
| 6 | eqneqall | ⊢ ( 𝑃 = ∅ → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 0 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 8 | 7 | com12 | ⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( 𝑃 ∈ 𝑉 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 9 | hash1snb | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 1 ↔ ∃ 𝑐 𝑃 = { 𝑐 } ) ) | |
| 10 | vex | ⊢ 𝑐 ∈ V | |
| 11 | preq12 | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ) → { 𝑎 , 𝑏 } = { 𝑐 , 𝑐 } ) | |
| 12 | dfsn2 | ⊢ { 𝑐 } = { 𝑐 , 𝑐 } | |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ) → { 𝑎 , 𝑏 } = { 𝑐 } ) |
| 14 | 13 | eqeq2d | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ) → ( 𝑃 = { 𝑎 , 𝑏 } ↔ 𝑃 = { 𝑐 } ) ) |
| 15 | 10 10 14 | spc2ev | ⊢ ( 𝑃 = { 𝑐 } → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) |
| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑐 𝑃 = { 𝑐 } → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) |
| 17 | 9 16 | biimtrdi | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) = 1 → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) |
| 19 | 18 | a1d | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 20 | 19 | expcom | ⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝑃 ∈ 𝑉 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 21 | hash2pr | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) | |
| 22 | 21 | a1d | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 23 | 22 | expcom | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝑃 ∈ 𝑉 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 24 | 8 20 23 | 3jaoi | ⊢ ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ ( ♯ ‘ 𝑃 ) = 2 ) → ( 𝑃 ∈ 𝑉 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ ( ♯ ‘ 𝑃 ) = 2 ) → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 26 | 4 25 | syld | ⊢ ( 𝑃 ∈ 𝑉 → ( ( ♯ ‘ 𝑃 ) ≤ 2 → ( 𝑃 ≠ ∅ → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 27 | 26 | com23 | ⊢ ( 𝑃 ∈ 𝑉 → ( 𝑃 ≠ ∅ → ( ( ♯ ‘ 𝑃 ) ≤ 2 → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 28 | 27 | imp | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅ ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 → ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 29 | fveq2 | ⊢ ( 𝑃 = { 𝑎 , 𝑏 } → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑎 , 𝑏 } ) ) | |
| 30 | hashprlei | ⊢ ( { 𝑎 , 𝑏 } ∈ Fin ∧ ( ♯ ‘ { 𝑎 , 𝑏 } ) ≤ 2 ) | |
| 31 | 30 | simpri | ⊢ ( ♯ ‘ { 𝑎 , 𝑏 } ) ≤ 2 |
| 32 | 29 31 | eqbrtrdi | ⊢ ( 𝑃 = { 𝑎 , 𝑏 } → ( ♯ ‘ 𝑃 ) ≤ 2 ) |
| 33 | 32 | exlimivv | ⊢ ( ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } → ( ♯ ‘ 𝑃 ) ≤ 2 ) |
| 34 | 28 33 | impbid1 | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅ ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |