This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of a powerset of a class V has size less than or equal to two iff it is an unordered pair of elements of V . (Contributed by AV, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashle2prv | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅ ) ) | |
| 2 | hashle2pr | ⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅ ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 4 | eldifi | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → 𝑃 ∈ 𝒫 𝑉 ) | |
| 5 | eleq1 | ⊢ ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) ) | |
| 6 | prelpw | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) ) | |
| 7 | 6 | biimprd | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 8 | 7 | el2v | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 9 | 5 8 | biimtrdi | ⊢ ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑃 ∈ 𝒫 𝑉 → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 10 | 4 9 | syl5com | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 11 | 10 | pm4.71rd | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝑃 = { 𝑎 , 𝑏 } ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 12 | 11 | 2exbidv | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ∃ 𝑎 ∃ 𝑏 𝑃 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑃 = { 𝑎 , 𝑏 } ) ) ) |
| 13 | r2ex | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑃 = { 𝑎 , 𝑏 } ) ) | |
| 14 | 13 | bicomi | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑃 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
| 15 | 14 | a1i | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑃 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) ) |
| 16 | 3 12 15 | 3bitrd | ⊢ ( 𝑃 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑃 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) ) |