This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashle2pr | |- ( ( P e. V /\ P =/= (/) ) -> ( ( # ` P ) <_ 2 <-> E. a E. b P = { a , b } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxnn0 | |- ( P e. V -> ( # ` P ) e. NN0* ) |
|
| 2 | xnn0le2is012 | |- ( ( ( # ` P ) e. NN0* /\ ( # ` P ) <_ 2 ) -> ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ ( # ` P ) = 2 ) ) |
|
| 3 | 1 2 | sylan | |- ( ( P e. V /\ ( # ` P ) <_ 2 ) -> ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ ( # ` P ) = 2 ) ) |
| 4 | 3 | ex | |- ( P e. V -> ( ( # ` P ) <_ 2 -> ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ ( # ` P ) = 2 ) ) ) |
| 5 | hasheq0 | |- ( P e. V -> ( ( # ` P ) = 0 <-> P = (/) ) ) |
|
| 6 | eqneqall | |- ( P = (/) -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) |
|
| 7 | 5 6 | biimtrdi | |- ( P e. V -> ( ( # ` P ) = 0 -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 8 | 7 | com12 | |- ( ( # ` P ) = 0 -> ( P e. V -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 9 | hash1snb | |- ( P e. V -> ( ( # ` P ) = 1 <-> E. c P = { c } ) ) |
|
| 10 | vex | |- c e. _V |
|
| 11 | preq12 | |- ( ( a = c /\ b = c ) -> { a , b } = { c , c } ) |
|
| 12 | dfsn2 | |- { c } = { c , c } |
|
| 13 | 11 12 | eqtr4di | |- ( ( a = c /\ b = c ) -> { a , b } = { c } ) |
| 14 | 13 | eqeq2d | |- ( ( a = c /\ b = c ) -> ( P = { a , b } <-> P = { c } ) ) |
| 15 | 10 10 14 | spc2ev | |- ( P = { c } -> E. a E. b P = { a , b } ) |
| 16 | 15 | exlimiv | |- ( E. c P = { c } -> E. a E. b P = { a , b } ) |
| 17 | 9 16 | biimtrdi | |- ( P e. V -> ( ( # ` P ) = 1 -> E. a E. b P = { a , b } ) ) |
| 18 | 17 | imp | |- ( ( P e. V /\ ( # ` P ) = 1 ) -> E. a E. b P = { a , b } ) |
| 19 | 18 | a1d | |- ( ( P e. V /\ ( # ` P ) = 1 ) -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) |
| 20 | 19 | expcom | |- ( ( # ` P ) = 1 -> ( P e. V -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 21 | hash2pr | |- ( ( P e. V /\ ( # ` P ) = 2 ) -> E. a E. b P = { a , b } ) |
|
| 22 | 21 | a1d | |- ( ( P e. V /\ ( # ` P ) = 2 ) -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) |
| 23 | 22 | expcom | |- ( ( # ` P ) = 2 -> ( P e. V -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 24 | 8 20 23 | 3jaoi | |- ( ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ ( # ` P ) = 2 ) -> ( P e. V -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 25 | 24 | com12 | |- ( P e. V -> ( ( ( # ` P ) = 0 \/ ( # ` P ) = 1 \/ ( # ` P ) = 2 ) -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 26 | 4 25 | syld | |- ( P e. V -> ( ( # ` P ) <_ 2 -> ( P =/= (/) -> E. a E. b P = { a , b } ) ) ) |
| 27 | 26 | com23 | |- ( P e. V -> ( P =/= (/) -> ( ( # ` P ) <_ 2 -> E. a E. b P = { a , b } ) ) ) |
| 28 | 27 | imp | |- ( ( P e. V /\ P =/= (/) ) -> ( ( # ` P ) <_ 2 -> E. a E. b P = { a , b } ) ) |
| 29 | fveq2 | |- ( P = { a , b } -> ( # ` P ) = ( # ` { a , b } ) ) |
|
| 30 | hashprlei | |- ( { a , b } e. Fin /\ ( # ` { a , b } ) <_ 2 ) |
|
| 31 | 30 | simpri | |- ( # ` { a , b } ) <_ 2 |
| 32 | 29 31 | eqbrtrdi | |- ( P = { a , b } -> ( # ` P ) <_ 2 ) |
| 33 | 32 | exlimivv | |- ( E. a E. b P = { a , b } -> ( # ` P ) <_ 2 ) |
| 34 | 28 33 | impbid1 | |- ( ( P e. V /\ P =/= (/) ) -> ( ( # ` P ) <_ 2 <-> E. a E. b P = { a , b } ) ) |