This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash2iun.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hash2iun.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| hash2iun.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) | ||
| hash2iun.da | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) | ||
| hash2iun.db | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Disj 𝑦 ∈ 𝐵 𝐶 ) | ||
| Assertion | hash2iun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2iun.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hash2iun.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 3 | hash2iun.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) | |
| 4 | hash2iun.da | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) | |
| 5 | hash2iun.db | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Disj 𝑦 ∈ 𝐵 𝐶 ) | |
| 6 | 3 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) |
| 7 | 6 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 𝐶 ∈ Fin ) |
| 8 | iunfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐵 𝐶 ∈ Fin ) → ∪ 𝑦 ∈ 𝐵 𝐶 ∈ Fin ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 𝐶 ∈ Fin ) |
| 10 | 1 9 4 | hashiun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ ∪ 𝑦 ∈ 𝐵 𝐶 ) ) |
| 11 | 2 6 5 | hashiun | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |
| 12 | 11 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ♯ ‘ ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |
| 13 | 10 12 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |