This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashgadd.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| Assertion | hashgadd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgadd.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = ∅ → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o ∅ ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ∅ ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑛 = ∅ → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o 𝑧 ) ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑛 = suc 𝑧 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o suc 𝑧 ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑛 = suc 𝑧 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑛 = suc 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ suc 𝑧 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑛 = 𝐵 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o 𝐵 ) ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝐵 ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑛 = 𝐵 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) |
| 24 | 21 23 | eqeq12d | ⊢ ( 𝑛 = 𝐵 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑛 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 26 | 1 | hashgf1o | ⊢ 𝐺 : ω –1-1-onto→ ℕ0 |
| 27 | f1of | ⊢ ( 𝐺 : ω –1-1-onto→ ℕ0 → 𝐺 : ω ⟶ ℕ0 ) | |
| 28 | 26 27 | ax-mp | ⊢ 𝐺 : ω ⟶ ℕ0 |
| 29 | 28 | ffvelcdmi | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℕ0 ) |
| 30 | 29 | nn0cnd | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
| 31 | 30 | addridd | ⊢ ( 𝐴 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + 0 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 32 | 0z | ⊢ 0 ∈ ℤ | |
| 33 | 32 1 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 0 |
| 34 | 33 | oveq2i | ⊢ ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + 0 ) |
| 35 | 34 | a1i | ⊢ ( 𝐴 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + 0 ) ) |
| 36 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 37 | 36 | fveq2d | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( 𝐺 ‘ 𝐴 ) ) |
| 38 | 31 35 37 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) |
| 39 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐴 +o suc 𝑧 ) = suc ( 𝐴 +o 𝑧 ) ) | |
| 40 | 39 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) ) |
| 41 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐴 +o 𝑧 ) ∈ ω ) | |
| 42 | 32 1 | om2uzsuci | ⊢ ( ( 𝐴 +o 𝑧 ) ∈ ω → ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 43 | 41 42 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 44 | 40 43 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 46 | 28 | ffvelcdmi | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℕ0 ) |
| 47 | 46 | nn0cnd | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 48 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 49 | addass | ⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) | |
| 50 | 48 49 | mp3an3 | ⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 51 | 30 47 50 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 53 | oveq1 | ⊢ ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) ) | |
| 54 | 53 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) ) |
| 55 | 32 1 | om2uzsuci | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 56 | 55 | oveq2d | ⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 57 | 56 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 58 | 52 54 57 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 59 | 45 58 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 60 | 59 | 3expia | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) |
| 61 | 60 | expcom | ⊢ ( 𝑧 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 62 | 61 | a2d | ⊢ ( 𝑧 ∈ ω → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 63 | 7 13 19 25 38 62 | finds | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 64 | 63 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) |