This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015) (Proof shortened by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfac | |- ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf1 | |- ( ( A e. Fin /\ A e. Fin ) -> ( # ` { f | f : A -1-1-> A } ) = ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) ) |
|
| 2 | 1 | anidms | |- ( A e. Fin -> ( # ` { f | f : A -1-1-> A } ) = ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) ) |
| 3 | enrefg | |- ( A e. Fin -> A ~~ A ) |
|
| 4 | f1finf1o | |- ( ( A ~~ A /\ A e. Fin ) -> ( f : A -1-1-> A <-> f : A -1-1-onto-> A ) ) |
|
| 5 | 3 4 | mpancom | |- ( A e. Fin -> ( f : A -1-1-> A <-> f : A -1-1-onto-> A ) ) |
| 6 | 5 | abbidv | |- ( A e. Fin -> { f | f : A -1-1-> A } = { f | f : A -1-1-onto-> A } ) |
| 7 | 6 | fveq2d | |- ( A e. Fin -> ( # ` { f | f : A -1-1-> A } ) = ( # ` { f | f : A -1-1-onto-> A } ) ) |
| 8 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 9 | bcnn | |- ( ( # ` A ) e. NN0 -> ( ( # ` A ) _C ( # ` A ) ) = 1 ) |
|
| 10 | 8 9 | syl | |- ( A e. Fin -> ( ( # ` A ) _C ( # ` A ) ) = 1 ) |
| 11 | 10 | oveq2d | |- ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) = ( ( ! ` ( # ` A ) ) x. 1 ) ) |
| 12 | 8 | faccld | |- ( A e. Fin -> ( ! ` ( # ` A ) ) e. NN ) |
| 13 | 12 | nncnd | |- ( A e. Fin -> ( ! ` ( # ` A ) ) e. CC ) |
| 14 | 13 | mulridd | |- ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. 1 ) = ( ! ` ( # ` A ) ) ) |
| 15 | 11 14 | eqtrd | |- ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) = ( ! ` ( # ` A ) ) ) |
| 16 | 2 7 15 | 3eqtr3d | |- ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) ) |