This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashen1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | hashsng | ⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ♯ ‘ { ∅ } ) = 1 |
| 4 | 3 | eqcomi | ⊢ 1 = ( ♯ ‘ { ∅ } ) |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → 1 = ( ♯ ‘ { ∅ } ) ) |
| 6 | 5 | eqeq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) | |
| 8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 9 | 3 8 | eqeltri | ⊢ ( ♯ ‘ { ∅ } ) ∈ ℕ0 |
| 10 | hashvnfin | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ { ∅ } ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ∈ Fin ) |
| 13 | snfi | ⊢ { ∅ } ∈ Fin | |
| 14 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ { ∅ } ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) |
| 16 | 7 15 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ≈ { ∅ } ) |
| 17 | 16 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ≈ { ∅ } ) ) |
| 18 | hasheni | ⊢ ( 𝐴 ≈ { ∅ } → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) | |
| 19 | 17 18 | impbid1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) |
| 20 | df1o2 | ⊢ 1o = { ∅ } | |
| 21 | 20 | eqcomi | ⊢ { ∅ } = 1o |
| 22 | 21 | breq2i | ⊢ ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o ) |
| 23 | 22 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o ) ) |
| 24 | 6 19 23 | 3bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |